# Федеральное государственное бюджетное образовательное учреждение высшего образования

"Дальневосточный государственный университет путей сообщения" (ДВГУПС)

**УТВЕРЖДАЮ** 

Зав.кафедрой (к911) Физика и теоретическая механика

Пячин С.А., д. физ.мат. наук, профессор

27.05.2025

## РАБОЧАЯ ПРОГРАММА

дисциплины Лазерные технологии

для направления подготовки 12.04.03 Фотоника и оптоинформатика

Составитель(и): д. физ.-мат. наук, Профессор, В.И. Иванов

Обсуждена на заседании кафедры: (к911) Физика и теоретическая механика

Протокол от 23.05.2025г. № 7

Обсуждена на заседании методической комиссии по родственным направлениям и специальностям: Протокол

| Визирование РПД для исполнения в очередном учебном году                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Председатель МК РНС                                                                                                                                                   |
| 2026 г.                                                                                                                                                               |
| Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2026-2027 учебном году на заседании кафедры (к911) Физика и теоретическая механика              |
| Протокол от 2026 г. №<br>Зав. кафедрой Пячин С.А., д. физмат. наук, профессор                                                                                         |
| Визирование РПД для исполнения в очередном учебном году                                                                                                               |
| Председатель МК РНС                                                                                                                                                   |
| 2027 г.                                                                                                                                                               |
| Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2027-2028 учебном году на заседании кафедры (к911) Физика и теоретическая механика  Протокол от |
| Зав. кафедрой Пячин С.А., д. физмат. наук, профессор                                                                                                                  |
| Визирование РПД для исполнения в очередном учебном году                                                                                                               |
| Председатель МК РНС                                                                                                                                                   |
|                                                                                                                                                                       |
| 2028 г.                                                                                                                                                               |
| 2028 г.  Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2028-2029 учебном году на заседании кафедры (к911) Физика и теоретическая механика     |
| Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2028-2029 учебном году на заседании кафедры                                                     |
| Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2028-2029 учебном году на заседании кафедры (к911) Физика и теоретическая механика  Протокол от |
| Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2028-2029 учебном году на заседании кафедры (к911) Физика и теоретическая механика  Протокол от |
| Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2028-2029 учебном году на заседании кафедры (к911) Физика и теоретическая механика  Протокол от |
| Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2028-2029 учебном году на заседании кафедры (к911) Физика и теоретическая механика  Протокол от |

Рабочая программа дисциплины Лазерные технологии

разработана в соответствии с  $\Phi$ ГОС, утвержденным приказом Министерства образования и науки Российской Федерации от 19.09.2017 № 935

Квалификация магистр

Форма обучения очная

# ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ С УКАЗАНИЕМ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ, ВЫДЕЛЕННЫХ НА КОНТАКТНУЮ РАБОТУ ОБУЧАЮЩИХСЯ С ПРЕПОДАВАТЕЛЕМ (ПО ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ) И НА САМОСТОЯТЕЛЬНУЮ РАБОТУ ОБУЧАЮЩИХСЯ

Общая трудоемкость 4 ЗЕТ

Часов по учебному плану 144 Виды контроля в семестрах:

в том числе: зачёты с оценкой 3

 контактная работа
 70

 самостоятельная работа
 74

#### Распределение часов дисциплины по семестрам (курсам)

| Семестр<br>(<Курс>.<Семес<br>тр на курсе>)<br>Недель | <b>3 (2.1)</b> |     | Итого |     |
|------------------------------------------------------|----------------|-----|-------|-----|
| Вид занятий                                          | УП             | РΠ  | УП    | РΠ  |
| Лекции                                               | 32             | 32  | 32    | 32  |
| Практически<br>е                                     | 32             | 32  | 32    | 32  |
| Контроль самостоятель ной работы                     | 6              | 6   | 6     | 6   |
| В том числе инт.                                     | 8              | 8   | 8     | 8   |
| Итого ауд.                                           | 64             | 64  | 64    | 64  |
| Контактная<br>работа                                 | 70             | 70  | 70    | 70  |
| Сам. работа                                          | 74             | 74  | 74    | 74  |
| Итого                                                | 144            | 144 | 144   | 144 |

### 1. АННОТАЦИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1 Основные области применения лазерных технологий. Физические процессы лазерных технологий при обработке материалов. Параметры технологических лазеров и лазерного излучения. Оптические системы лазерной обработки. Основные направления развития технологий. Основные особенности воздействия лазерного излучения на твердые среды. Основные физические процессы лазерных технологий. Поглощение света и преобразование энергии света в тепло. Физические процессы, возникающие на поверхности твердых тел при лазерном нагреве. Теплофизика лазерного нагревания. Физические процессы лазерной обработки. Испарение. Одномерная модель движения фронта раздела фаз. Двумерная двухфазная модель лазерной обработки. Давление отдачи при испарении. Уравнение Клаузиуса—Клапейрона. Устройство газового лазера. Основные характеристики объемных голограмм. Электрооптический затвор. Нелинейно-оптические явления в жидкостях.

|         | 2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ                        |  |  |  |  |  |  |  |
|---------|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Код дис | Код дисциплины: Б1.В.ДВ.02.02                                                             |  |  |  |  |  |  |  |
| 2.1     | 2.1 Требования к предварительной подготовке обучающегося:                                 |  |  |  |  |  |  |  |
| 2.1.1   | 1 Современная физика твердого тела                                                        |  |  |  |  |  |  |  |
| 2.1.2   | Волноводная фотоника                                                                      |  |  |  |  |  |  |  |
| 2.2     | 2.2 Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как |  |  |  |  |  |  |  |
|         | предшествующее:                                                                           |  |  |  |  |  |  |  |
| 2.2.1   | Фотоиндуцированные процессы в наноразмерных средах                                        |  |  |  |  |  |  |  |
| 2.2.2   | Преддипломная практика                                                                    |  |  |  |  |  |  |  |

#### 3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

УК-4: Способен применять современные коммуникативные технологии, в том числе на иностранном(ых) языке(ах), для академического и профессионального взаимодействия

#### Знать:

Правила и закономерности личной и деловой устной и письменной коммуникации; современные коммуникативные технологии на русском и иностранном языках; существующие профессиональные сообщества для профессионального взаимодействия.

#### Уметь:

Применять на практике коммуникативные технологии, методы и способы делового общения для академического и профессионального взаимодействия.

#### Владеть:

Методикой межличностного делового общения на русском и иностранном языках, с применением профессиональных языковых форм, средств и современных коммуникативных технологий.

# УК-6: Способен определять и реализовывать приоритеты собственной деятельности и способы ее совершенствования на основе самооценки

#### Знать:

Методики самооценки, самоконтроля и саморазвития с использованием подходов здоровьесбережения.

#### Уметь:

Решать задачи собственного личностного и профессионального развития, определять и реализовывать приоритеты совершенствования собственной деятельности; применять методики самооценки и самоконтроля; применять методики, позволяющие улучшить и сохранить здоровье в процессе жизнедеятельности.

#### Владеть:

Технологиями и навыками управления своей познавательной деятельностью и ее совершенствования на основе самооценки, самоконтроля и принципов самообразования в течение всей жизни, в том числе с использованием здоровьесберегающих подходов и методик.

#### ПК-1: Готовность обосновать актуальность целей и задач проводимых научных исследований

#### Знать:

Современные научные достижения в области фотоники и оптоинформатики

#### Уметь:

Обосновывать актуальность целей и задач проводимых научных исследований

#### Владеть:

Способностью обосновать актуальность целей и задач проводимых научных исследований

# ПК-3: Способность оценивать научную значимость и перспективы прикладного использования результатов исследования

#### Знать:

Современные научные достижения науки и техники

Уметь:

Оценивать научную значимость и перспективы прикладного использования результатов исследования

#### Владеть:

Способностью оценивать научную значимость и перспективы прикладного использования результатов исследования

#### 4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ), СТРУКТУРИРОВАННОЕ ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ Код Наименование разделов и тем /вид Семестр Компетен-Инте Часов Литература Примечание занятия занятия/ / Kypc ракт. ции Раздел 1. Практические 1.1 Основные особенности воздействия 3 4 УК-6 ПК-1 Л1.1Л2.1 1 активное лазерного излучения на твердые УК-4 ПК-3 Л2.2 слущание Л2.3Л3.3 среды /Пр/ Л3.4 Э1 Э2 1.2 3 УК-6 ПК-1 Л1.1Л2.1 Основные физические процессы 4 работа в УК-4 ПК-3 Л2.2Л3.3 лазерных технологий /Пр/ малых группах Л3.4 **Э1 Э2** 1.3 3 2 УК-6 ПК-1 Л1.1Л2.1 0 Поглощение света и преобразование УК-4 ПК-3 энергии света в тепло /Пр/ Л2.2Л3.2 Л3.4 Э1 Э2 1.4 Физические процессы, возникающие 3 2 УК-6 ПК-1 Л1.1Л2.1 2 дискуссии УК-4 ПК-3 на поверхности твердых тел при Л2.2 Л2.3Л3.4 лазерном нагреве /Пр/ Э1 Э**2** 1.5 Теплофизика лазерного 3 2 УК-6 ПК-1 Л1.1Л2.1 0 УК-4 ПК-3 нагревания /Пр/ Л2.2 Л2.3Л3.1 Л3.4 **Э1 Э2** 3 2 УК-6 ПК-1 Л1.1Л2.1 2 1.6 Физические процессы лазерной работа в УК-4 ПК-3 обработки: испарение – движение Л2.2 малых группах Л2.3Л3.4 фронта раздела фаз – одномерная модель (движение фронта испарения Л3.5 внутрь материала) /Пр/ Э1 Э2 Двумерная двухфазная (ДД) модель УК-6 ПК-1 Л1.1Л2.1 0 1.7 3 2 лазерной обработки /Пр/ УК-4 ПК-3 Л2.2Л3.4 Л3.5 **Э1 Э2** 3 2 УК-6 ПК-1 1.8 Давление отдачи при испарении. Л1.1Л2.1 0 Уравнение Клаузиуса–Клапейрона /Пр/ УК-4 ПК-3 Л2.2 Л2.3Л3.1 Л3.4 Э1 Э2 1.9 Устройство газового лазера /Пр/ 3 4 УК-6 ПК-1 Л1.1Л2.1 0 УК-4 ПК-3 Л2.2Л3.2 Л3.4 **Э1 Э2** 1.10 3 4 УК-6 ПК-1 2 Основные характеристики объемных Л1.1Л2.1 методы голограмм /Пр/ УК-4 ПК-3 Л2.2Л3.3 группового Л3.4 решения Э1 Э2 творческих задач 1.11 Электрооптический затвор /Пр/ 3 2 УК-6 ПК-1 Л1.1Л2.1 0 УК-4 ПК-3 Л2.2Л3.4 Л3.6 Э1 Э2

| 1.12    | Tit                                                        | 2 | 1 2      | VIII ( FIII 1          | П1 1 П2 1             | 1 0      | <u> </u> |
|---------|------------------------------------------------------------|---|----------|------------------------|-----------------------|----------|----------|
| 1.12    | Нелинейно-оптические явления в                             | 3 | 2        | УК-6 ПК-1<br>УК-4 ПК-3 | Л1.1Л2.1<br>Л2.2      | 0        |          |
|         | жидкостях /Пр/                                             |   |          | J K-4 11K-3            | Л2.3Л3.1              |          |          |
|         |                                                            |   |          |                        | Л3.4                  |          |          |
|         |                                                            |   |          |                        | 91 92                 |          |          |
|         | Раздел 2. Лекции                                           |   | 1        |                        | 3132                  |          |          |
| 2.1     | Основные области применения                                | 3 | 2        | УК-6 ПК-1              | Л1.1Л2.2Л3.           | 0        |          |
|         | лазерных технологий. /Лек/                                 |   | _        | УК-4 ПК-3              | 4 Л3.5 Л3.6           |          |          |
|         |                                                            |   |          |                        | Э1 Э2                 |          |          |
| 2.2     | Физические процессы лазерных                               | 3 | 2        | УК-6 ПК-1              | Л1.1Л2.2Л3.           | 0        |          |
|         | технологий при обработке                                   |   |          | УК-4 ПК-3              | 4                     |          |          |
|         | материалов. /Лек/                                          |   |          |                        | Э1 Э2                 |          |          |
| 2.3     | Параметры технологических лазеров и                        | 3 | 2        | УК-6 ПК-1              | Л1.1Л2.2Л3.           | 0        |          |
|         | лазерного излучения. /Лек/                                 |   |          | УК-4 ПК-3              | 4                     |          |          |
|         |                                                            |   |          |                        | Э1 Э2                 |          |          |
| 2.4     | Оптические системы лазерной                                | 3 | 2        | УК-6 ПК-1              | Л1.1Л2.2Л3.           | 0        |          |
|         | обработки. Основные направления                            |   |          | УК-4 ПК-3              | 4                     |          |          |
|         | развития технологий. /Лек/                                 |   |          |                        | Э1 Э2                 |          |          |
| 2.5     | Основные особенности воздействия                           | 3 | 4        | УК-6 ПК-1              | Л1.1Л2.1              | 0        |          |
|         | лазерного излучения на твердые среды.                      |   |          | УК-4 ПК-3              | Л2.2Л3.4              |          |          |
|         | Основные физические процессы                               |   |          |                        | Э1 Э2                 |          |          |
| 2.6     | лазерных технологий. /Лек/                                 | 2 | <u> </u> | VIII C FIX 1           | П1 1 П2 2 П2          | 0        |          |
| 2.6     | Поглощение света и преобразование                          | 3 | 2        | УК-6 ПК-1              | Л1.1Л2.2Л3.           | 0        |          |
|         | энергии света в тепло. Физические процессы, возникающие на |   |          | УК-4 ПК-3              | 4<br>Э1 Э2            |          |          |
|         | поверхности твердых тел при лазерном                       |   |          |                        | 91 92                 |          |          |
|         | нагреве. /Лек/                                             |   |          |                        |                       |          |          |
| 2.7     | Теплофизика лазерного нагревания.                          | 3 | 2        | УК-6 ПК-1              | Л1.1Л2.2Л3.           | 0        |          |
| 2.7     | Физические процессы лазерной                               | 3 |          | УК-4 ПК-3              | 4                     |          |          |
|         | обработки. Испарение. /Лек/                                |   |          |                        | Э1 Э2                 |          |          |
| 2.8     | Одномерная модель движения фронта                          | 3 | 4        | УК-6 ПК-1              | Л1.1Л2.2Л3.           | 0        |          |
|         | раздела фаз. Двумерная двухфазная                          |   |          | УК-4 ПК-3              | 4                     |          |          |
|         | модель лазерной обработки. /Лек/                           |   |          |                        | Э1 Э2                 |          |          |
| 2.9     | Давление отдачи при испарении.                             | 3 | 4        | УК-6 ПК-1              | Л1.1Л2.2Л3.           | 0        |          |
|         | Уравнение Клаузиуса-                                       |   |          | УК-4 ПК-3              | 4                     |          |          |
|         | Клапейрона. /Лек/                                          |   |          |                        | Э1 Э2                 |          |          |
| 2.10    | Устройство газового лазера. /Лек/                          | 3 | 2        | УК-6 ПК-1              | Л1.1Л2.2Л3.           | 0        |          |
|         |                                                            |   |          | УК-4 ПК-3              | 4                     |          |          |
| 2.11    |                                                            | 2 | -        | NIC C FILL 1           | Э1 Э2<br>H1 1 H2 2 H2 | 0        |          |
| 2.11    | Основные характеристики объемных                           | 3 | 2        | УК-6 ПК-1<br>УК-4 ПК-3 | Л1.1Л2.2Л3.           | 0        |          |
|         | голограмм. /Лек/                                           |   |          | УК-4 ПК-3              | 4<br>Э1 Э2            |          |          |
| 2.12    | Электрооптический затвор. Нелинейно                        | 3 | 4        | УК-6 ПК-1              | Л1.1Л2.2Л3.           | 0        |          |
| 2.12    | -оптические явления в жидкостях. /Лек/                     | 3 | -        | УК-4 ПК-3              | 4                     | 0        |          |
|         | THE ISSUED ASSISTED A MALAROCTAN. (SICK)                   |   |          |                        | 91 <b>9</b> 2         |          |          |
|         | Раздел 3. Самостоятельная работа                           |   | 1        |                        |                       |          |          |
| 3.1     | изучение теоретического материала по                       | 3 | 24       | УК-6 ПК-1              | Л1.1Л2.1              | 0        |          |
| 5.1     | учебной и учебно-методической                              | J | ~.       | УК-4 ПК-3              | Л2.2                  |          |          |
|         | литературе /Ср/                                            |   |          |                        | Л2.3Л3.1              |          |          |
|         |                                                            |   |          |                        | Л3.4 Л3.5             |          |          |
|         |                                                            |   |          |                        | Л3.6                  |          |          |
| <u></u> |                                                            |   | <u>L</u> |                        | Э1 Э2                 | <u> </u> |          |
| 3.2     | отработка навыков решения задач по                         | 3 | 15       | УК-6 ПК-1              | Л1.1Л2.1              | 0        |          |
|         | темам практических занятий /Ср/                            |   |          | УК-4 ПК-3              | Л2.2Л3.3              |          |          |
|         |                                                            |   |          |                        | Л3.4                  |          |          |
|         |                                                            |   | <u> </u> |                        | <del>31 32</del>      |          |          |
| 3.3     | подготовка к тестированию по                               | 3 | 18       | УК-6 ПК-1              | Л1.1Л2.1              | 0        |          |
|         | отдельным разделам. подготовка к                           |   |          | УК-4 ПК-3              | Л2.2                  |          |          |
|         | итоговому тестированию по всему                            |   |          |                        | Л2.3Л3.1<br>Л3.3 Л3.4 |          |          |
|         | курсу /Ср/                                                 |   |          |                        | 91 92                 |          |          |
|         |                                                            |   |          |                        | J1 J2                 |          |          |

| 3.4 | подготовка к зачету /Ср/ | 3 | 9 | УК-6 ПК-1 | Л1.1Л2.1  | 0 |  |
|-----|--------------------------|---|---|-----------|-----------|---|--|
|     |                          |   |   | УК-4 ПК-3 | Л2.2      |   |  |
|     |                          |   |   |           | Л2.3Л3.1  |   |  |
|     |                          |   |   |           | Л3.2 Л3.3 |   |  |
|     |                          |   |   |           | Л3.4      |   |  |
|     |                          |   |   |           | Э1 Э2     |   |  |
|     | Раздел 4. Контроль       |   |   |           |           |   |  |
| 4.1 | зачет /ЗачётСОц/         | 3 | 8 | УК-6 ПК-1 | Л1.1Л2.1  | 0 |  |
|     |                          |   |   | УК-4 ПК-3 | Л2.2      |   |  |
|     |                          |   |   |           | Л2.3Л3.1  |   |  |
|     |                          |   |   |           | Л3.2 Л3.3 |   |  |
|     |                          |   |   |           | Л3.4 Л3.5 |   |  |
|     |                          |   |   |           | Л3.6      |   |  |
|     |                          |   |   |           | Э1 Э2     |   |  |

### 5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУГОЧНОЙ АТТЕСТАЦИИ

Размещены в приложении

| 6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) 6.1. Рекомендуемая литература |                                              |                                                                                                                      |                                                                                   |  |  |  |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|
|                                                                                                       | 6.1.1. Перече                                | нь основной литературы, необходимой для освоения дисцип.                                                             | лины (модуля)                                                                     |  |  |  |
|                                                                                                       | Авторы, составители                          | Заглавие                                                                                                             | Издательство, год                                                                 |  |  |  |
| Л1.1                                                                                                  | Криштоп В.В., Сюй<br>А.В., Литвинова<br>М.Н. | Взаимодействие оптического излучения с веществом: учеб. пособие                                                      | Хабаровск: Изд-во ДВГУПС,<br>2013,                                                |  |  |  |
|                                                                                                       | 6.1.2. Перечень д                            | ополнительной литературы, необходимой для освоения дис                                                               | циплины (модуля)                                                                  |  |  |  |
|                                                                                                       | Авторы, составители                          | Заглавие                                                                                                             | Издательство, год                                                                 |  |  |  |
| Л2.1                                                                                                  | Ермаков О.Н.                                 | Прикладная оптоэлектроника                                                                                           | Москва: Техносфера, 2004,                                                         |  |  |  |
| Л2.2                                                                                                  | Розеншер Э., Винтер Б., Ермаков О.Н.         | Оптоэлектроника: пер. с франц.                                                                                       | Москва: Техносфера, 2006,                                                         |  |  |  |
| Л2.3                                                                                                  | Вейко В. П.,<br>Либенсон М. Н.               | Взаимодействие лазерного излучения с веществом                                                                       | Москва: Физматлит, 2008,<br>http://biblioclub.ru/index.php?<br>page=book&id=68145 |  |  |  |
| 6.                                                                                                    | 1.3. Перечень учебно-м                       | иетодического обеспечения для самостоятельной работы обуч<br>(модулю)                                                | нающихся по дисциплине                                                            |  |  |  |
|                                                                                                       | Авторы, составители                          | Заглавие                                                                                                             | Издательство, год                                                                 |  |  |  |
| Л3.1                                                                                                  | Сюй А.В.                                     | Оптика: Учеб. пособие                                                                                                | Хабаровск: Изд-во ДВГУПС, 2008,                                                   |  |  |  |
| Л3.2                                                                                                  | Сюй А.В., Иванов<br>В.И.                     | Изучение пространственной когерентности света по схеме Юнга: Метод. указания к вып. лаб. работы                      | Хабаровск: Изд-во ДВГУПС, 2008,                                                   |  |  |  |
| Л3.3                                                                                                  | Сюй А.В.                                     | Интерференционно-поляризационные характеристики излучения, прошедшего кристаллические пластинки: моногр.             | Хабаровск: Изд-во ДВГУПС,<br>2008,                                                |  |  |  |
| Л3.4                                                                                                  | Сюй А.В.                                     | Запись изображения в кристаллах ниобата лития широкополосным излучением: моногр.                                     | Хабаровск: Изд-во ДВГУПС, 2008,                                                   |  |  |  |
| Л3.5                                                                                                  | Сюй А.В., Сидоров<br>Н.В.                    | Фоторефрактивные свойства и особенности строения нелинейно-оптического кристалла ниобата лития: моногр.              | Хабаровск: Изд-во ДВГУПС, 2011,                                                   |  |  |  |
| Л3.6                                                                                                  | Алексеева Л.В., Сюй<br>А.В.                  | Изучение явлений двойного лучепреломления и оптической активности: метод. указания на выполнение лабораторной работы | Хабаровск: Изд-во ДВГУПС,<br>2013,                                                |  |  |  |
| 6.                                                                                                    | 2. Перечень ресурсов и                       | информационно-телекоммуникационной сети "Интернет", н<br>дисциплины (модуля)                                         | еобходимых для освоения                                                           |  |  |  |
| Э1                                                                                                    | Научная электронная б                        | библиотека eLIBRARY.RU                                                                                               | elibrary.ru                                                                       |  |  |  |
| Э2                                                                                                    | Электронный каталог 1                        | НТБ ДВГУПС                                                                                                           | http://lib-irbis.dvgups.ru                                                        |  |  |  |
| Э3                                                                                                    |                                              |                                                                                                                      |                                                                                   |  |  |  |

(при необходимости)
6.3.1 Перечень программного обеспечения

Антиплагиат - Система автоматической проверки текстов на наличие заимствований из общедоступных сетевых источников, контракт 12724018158180000974/830 ДВГУПС

ACT тест - Комплекс программ для создания банков тестовых заданий, организации и проведения сеансов тестирования, лиц. ACT.PM. A096. Л08018.04, дог. 372

Free Conference Call (свободная лицензия)

Zoom (свободная лицензия)

#### 6.3.2 Перечень информационных справочных систем

Профессиональная база данных, информационно-справочная система КонсультантПлюс - http://www.consultant.ru; Профессиональная база данных, информационно-справочная система Техэксперт - http://www.cntd.ru

| 7. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ<br>ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ) |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Аудитория                                                                                                                   | Назначение                                                                                                                        | Оснащение                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 3434                                                                                                                        | Учебная аудитория для проведения занятий лекционного типа.                                                                        | комплект учебной мебели, тематические плакаты. Технические средства обучения: интерактивная доска, проектор, ноутбук. Лицензионное программное обеспечение: Windows 10 Pro для образовательных учреждений, версия 1909; Microsoft Office Pro Plus 2007; лиц. 168699; Антивирус Kaspersky Endpoint Security                     |  |  |  |
| 3532                                                                                                                        | Учебная аудитория для проведения лабораторных и практических занятий. Лаборатория "Численное моделирование физических процессов". | Комплект учебно-лабораторного оборудования «Общая физика» в составе 10 лабораторных работ с применением технологии виртуальной реальности Лицензионное программное обеспечение: Windows 10 Pro для образовательных учреждений, версия 1909; Microsoft Office Pro Plus 2007; лиц. 168699; Антивирус Kaspersky Endpoint Security |  |  |  |
| 3317                                                                                                                        | Помещения для самостоятельной работы обучающихся. Читальный зал НТБ                                                               | Тематические плакаты, столы, стулья, стеллажи Компьютерная техника с возможностью подключения к сети Интернет, свободному доступу в ЭБС и ЭИОС.                                                                                                                                                                                |  |  |  |
| 423                                                                                                                         | Помещения для самостоятельной работы обучающихся. зал электронной информации                                                      | Тематические плакаты, столы, стулья, стеллажи Компьютерная техника с возможностью подключения к сети Интернет, свободному доступу в ЭБС и ЭИОС.                                                                                                                                                                                |  |  |  |

### 8. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

С целью эффективной организации учебного процесса обучающимся в начале семестра предоставляется учебнометодическое и информационное обеспечение, приведенное в данной рабочей программе. В процессе обучения студенты должны, в соответствии с планом выполнения самостоятельных работ, изучать теоретический материал по предстоящему занятию и формулировать вопросы, вызывающие у них затруднение для рассмотрения на лекционном, практическом и лабораторном занятии. В ходе лекционных занятий студентам необходимо вести конспектирование учебного материала, при этом запись лекций рекомендуется вести по возможности собственными формулировками. Желательно оставить в рабочих конспектах поля, на которых во внеаудиторное время можно сделать пометки из рекомендованной литературы, дополняющие материал прослушанной лекции, а также подчеркивающие особую важность тех или иных теоретических положений. Работая над конспектом лекций, всегда следует использовать не только учебник, но и ту литературу, которую дополнительно рекомендовал лектор. Самостоятельная подготовка студента к следующей лекции должна состоять в первую очередь в перечитывании конспекта предыдущей лекции.

Практические работы: необходимо получить задание у преподавателя. Изучить соответствующую литературу. Защита практических работ является необходимым условием для допуска к итоговому контролю (к зачету) по дисциплине. Защита производится в виде индивидуального собеседования с каждым студентом по теоретической и практической частям выполненной работы. Ответы на поставленные вопросы студент дает в устной или письменной форме.

В течение практического занятия студенту необходимо выполнить задания, выданные преподавателем, для этого при подготовке к практическим занятиям студентам необходимо изучить основную литературу, ознакомиться с дополнительной литературой с учетом рекомендаций преподавателя и требований учебной программы.

Виды самостоятельной работы студентов и их состав:

- изучение теоретического материала по лекциям, учебной и учебно-методической литературе;
- отработка навыков решения задач по темам лекций, практических и лабораторных занятий;
- выполнение контрольных работ;
- подготовка к зачету.

Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине:

- конспекты лекций;
- основная учебная литература, в том числе на электронном носителе;
- дополнительная литература, в том числе на электронном носителе;
- справочники.

Студенты с ограниченными возможностями здоровья, в отличие от остальных студентов, имеют свои специфические особенности восприятия, переработки материала. Обучающиеся инвалиды, могут обучаться по индивидуальному учебному плану в установленные сроки с учетом особенностей и образовательных потребностей конкретного обучающегося.

Проведение учебного процесса может быть организовано с использованием ЭИОС университета и в цифровой среде

(группы в социальных сетях, электронная почта, видеосвязь и др. платформы). Учебные занятия с применением ДОТ проходят в соответствии с утвержденным расписанием. Текущий контроль и промежуточная аттестация обучающихся проводится с применением ДОТ.

### Оценочные материалы при формировании рабочих программ дисциплин (модулей)

Направление: 12.04.03 Фотоника и оптоинформатика

Направленность (профиль): Физика и техника оптической связи

Дисциплина: Лазерные технологии

### Формируемые компетенции:

1. Описание показателей, критериев и шкал оценивания компетенций.

Показатели и критерии оценивания компетенций

| Объект      | Уровни сформированности                                                      | Критерий оценивания                             |
|-------------|------------------------------------------------------------------------------|-------------------------------------------------|
| оценки      | компетенций                                                                  | результатов обучения                            |
| Обучающийся | Низкий уровень<br>Пороговый уровень<br>Повышенный уровень<br>Высокий уровень | Уровень результатов обучения не ниже порогового |

#### Шкалы оценивания компетенций при сдаче экзамена или зачета с оценкой

| Достигнутый                 | Характеристика уровня сформированности                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Шкала оценивания               |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| уровень результата обучения | компетенций                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Экзамен или зачет с<br>оценкой |
| Низкий<br>уровень           | Обучающийся: -обнаружил пробелы в знаниях основного учебно-программного материала; -допустил принципиальные ошибки в выполнении заданий, предусмотренных программой; -не может продолжить обучение или приступить к профессиональной деятельности по окончании программы без дополнительных занятий по соответствующей дисциплине.                                                                                                                                                                      | Неудовлетворительно            |
| Пороговый<br>уровень        | Обучающийся: -обнаружил знание основного учебно-программного материала в объёме, необходимом для дальнейшей учебной и предстоящей профессиональной деятельности; -справляется с выполнением заданий, предусмотренных программой; -знаком с основной литературой, рекомендованной рабочей программой дисциплины; -допустил неточности в ответе на вопросы и при выполнении заданий по учебно-программному материалу, но обладает необходимыми знаниями для их устранения под руководством преподавателя. | Удовлетворительно              |
| Повышенный<br>уровень       | Обучающийся: - обнаружил полное знание учебно-программного материала; -успешно выполнил задания, предусмотренные программой; -усвоил основную литературу, рекомендованную рабочей программой дисциплины; -показал систематический характер знаний учебно-программного материала; -способен к самостоятельному пополнению знаний по учебно-программному материалу и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.                                                         | Хорошо                         |

| Высокий | Обучающийся:                                                 | Отлично |
|---------|--------------------------------------------------------------|---------|
| уровень | -обнаружил всесторонние, систематические и глубокие знания   |         |
|         | учебно-программного материала;                               |         |
|         | -умеет свободно выполнять задания, предусмотренные           |         |
|         | программой;                                                  |         |
|         | -ознакомился с дополнительной литературой;                   |         |
|         | -усвоил взаимосвязь основных понятий дисциплин и их значение |         |
|         | для приобретения профессии;                                  |         |
|         | -проявил творческие способности в понимании учебно-          |         |
|         | программного материала.                                      |         |
|         |                                                              |         |

# Описание шкал оценивания Компетенции обучающегося оценивается следующим образом:

| Планируемый<br>уровень | Содержание шкалы оценивания достигнутого уровня результата обучения                                                                                                     |                                                                                                                                                                    |                                                                                                                                                                                                                |                                                                                                                                                                                                             |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| результатов            | Неудовлетворительн                                                                                                                                                      | Удовлетворительно                                                                                                                                                  | Хорошо                                                                                                                                                                                                         | Отлично                                                                                                                                                                                                     |  |
| освоения               | Не зачтено                                                                                                                                                              | Зачтено                                                                                                                                                            | Зачтено                                                                                                                                                                                                        | Зачтено                                                                                                                                                                                                     |  |
| Знать                  | Неспособность обучающегося самостоятельно продемонстрировать наличие знаний при решении заданий, которые были представлены преподавателем вместе с образцом их решения. | Обучающийся способен самостоятельно продемонстриро-вать наличие знаний при решении заданий, которые были представлены преподавателем вместе с образцом их решения. | Обучающийся демонстрирует способность к самостоятельному применению знаний при решении заданий, аналогичных тем, которые представлял преподаватель, и при его                                                  | Обучающийся демонстрирует способность к самостоятельно-му применению знаний в выборе способа решения неизвестных или нестандартных заданий и при консультативной поддержке в части                          |  |
| Уметь                  | Отсутствие у обучающегося самостоятельности в применении умений по использованию методов освоения учебной дисциплины.                                                   | Обучающийся демонстрирует самостоятельность в применении умений решения учебных заданий в полном соответствии с образцом, данным преподавателем.                   | и при его Обучающийся продемонстрирует самостоятельное применение умений решения заданий, аналогичных тем, которые представлял преподаватель, и при его консультативной поддержке в части современных проблем. | межлисииплинарных Обучающийся демонстрирует самостоятельное применение умений решения неизвестных или нестандартных заданий и при консультативной поддержке преподавателя в части междисциплинарных связей. |  |
| Владеть                | Неспособность самостоятельно проявить навык решения поставленной задачи по стандартному образцу повторно.                                                               | Обучающийся демонстрирует самостоятельность в применении навыка по заданиям, решение которых было показано преподавателем.                                         | Обучающийся демонстрирует самостоятельное применение навыка решения заданий, аналогичных тем, которые представлял преподаватель, и при его консультативной поддержке в части современных проблем.              | Обучающийся демонстрирует самостоятельное применение навыка решения неизвестных или нестандартных заданий и при консультативной поддержке преподавателя в части междисциплинарных связей.                   |  |

Примерный перечень вопросов к зачету

Компетенция -УК-4; УК-6:

Основные области применения лазеров.

- 1. Перспективные применения лазеров.
- 2. Лазерные технологии в производстве мобильных телефонов и персональных компьютеров.
- 3. Лазерные технологии дифракционных оптических элементов (ДОЭ), оптической памяти CD–ROM, CD–RW и др.
  - 4. Лазерное микроструктурирование поверхностей.
  - 5. Лазерное сверление микроотверстий в алмазных фильерах для волочения проволоки.
  - 6. Примеры лазерной микрообработки.
  - 7. Лазерная полировка оптических поверхностей.
  - 8. Лазерная очистка поверхности.
  - 9. Трехмерный лазерный синтез объектов и изображений.
  - 10. Космические применения лазеров.
  - 11. Дистанционное лазерное зондирование космических объектов.

#### Компетенция ПК-1; ПК-3:

- 1. Лазерная реактивная тяга атмосферные и внеатмосферные двигатели.
- 2. Лазерное противоракетное оружие.
- 3. Основные области применения лазеров в медицине.
- 4. Преодоление дифракционного предела в оптике.
- 5. Основные физические процессы лазерных технологий.
- 6. Поглощение света и преобразование энергии света в тепло.
- 7. Двумерная двухфазная (ДД) модель лазерной обработки.
- 8. Давление отдачи при испарении. Уравнение Клаузиуса–Клапейрона.
- 9. Характеристики «качества» излучения технологических лазеров: когерентность, монохроматичность, поляризация. Эксплуатационные характеристики.
  - 10. Характерные параметры технологических лазеров.
  - 11. Технологические лазеры и лазерные технологии.
  - 12. Диодные лазеры и информационные технологии.

#### Примерные практические задачи (задания) и ситуации

Компетенция УК-4; УК-6:

- 1. Определить радиус области, в которой сосредоточено 50%, 90% всей энергии гауссова пучка, если задан характерный размер гауссова распределения г.
- 2. Рассчитать параметры механического прерывателя, представляющий собой вращающийся диск с прорезью (размеры прорези и угловую скорость вращения диска), если из импульса длительностью 100 мкс необходимо получить импульсы длительностью 40 мкс при частоте следования импульсов 250 Гц.
- 3. Доказать, что при угле падения, равном углу Брюстера, угол между отраженным и преломленным лучами равен  $\pi/2$ .
- 4. Определить мощность и энергию импульсов излучения N2-лазера длительностью □=10-8 с, необходимые для достижения плотности мощности излучения в фокусе q0=107 Bт/см2, если расходимость пучка 1 мрад, а фокусное расстояние оптической системы 3 см.
- 5. Определить, во сколько раз изменится диаметр пучка в фокусе линзы, если перед ней поставить телескопическую систему с увеличением bx.
- 6. Определить плотность мощности лазерного излучения на обрабатываемой поверхности в центре облученной области, если известна мощность излучения P и распределение плотности мощности излучения
  - а) гауссово,
  - б) постоянное в пределах облученной области
- 7. Определить, какая доля лазерного излучения находится внутри круговой области , где r характерный размер гауссова распределения плотности мощности излучения в пучке .
- 8. Определить радиус области, в которой сосредоточено 50%, 90% всей энергии гауссова пучка, если задан характерный размер гауссова распределения г0.
- 9. Рассчитать параметры механического обтюратора, представляющего собой вращающийся диск с прорезью (размеры прорези и угловую скорость вращения диска), если из импульсов длительностью 100 мкс необходимо получить импульсы излучения длительностью 40 мкс при частоте следования импульсов 250 Гц.
- 10. Определить распределение интенсивностей в многолучевой лазерной системе для случайного и постоянного сдвига фаз  $\square$  излучения отдельных лазеров, если излучение каждого из них поляризовано в одной и той же плоскости и колебания их электрического поля описываются формулой Ei=E0cos( $\omega$ t+ $\square$ i). При решении задачи принять во внимание, что амплитуда суммы двух колебаний с амплитудами E01 и E02, фазами  $\square$ 1 и  $\square$ 2 и одинаковой частотой равна .

- 11. Определить теоретическую дифракционную расходимость излучения различных лазеров, считая распределение интенсивности равномерным в пределах заданного диаметра пучка для Cu, Nd:YAG, N2 и CO2 -лазеров и гауссовым для He-Ne лазера, по следующим данным:
  - a) Nd:YAG  $\lambda$ =1,06 MKM D=5 MM;
  - б) He-Ne  $\lambda$ =0,63 мкм D = 0,3 мм;
  - B) Cu  $\lambda = 0.5 \text{ MKM}$  D = 3 MM;
  - r) N2  $\lambda = 0.34 \text{ MKM}$  D = 0.3 MM;
  - д) CO2  $\lambda = 10.6 \text{ мкм}$  D = 5 мм,
- где  $\lambda$  длина волны излучения, D диаметр лазерного пучка на выходе лазера. Решение оформить в виде таблицы.
- 12. Определить расходимость излучения многомодового лазера в зависимости от числа генерируемых поперечных мод.
- 13. Доказать, что при угле падения, равном углу Брюстера, угол между отраженным и преломленным лучами равен  $\Box/2$ .
- 14. Показать, какой режим, импульсный или непрерывный, более эффективен для лазерной обработки.
- 15. Рассмотреть различные методы обеспечения импульсного режима воздействия (режимы свободной генерации, модуляции добротности и синхронизации мод) и сравнить их по следующим параметрам: КПД, энергия импульса, длительность импульса, средняя и импульсная мощность, частота следования импульсов.
- 16. Построить ход лучей лазерного пучка через линзу с фокусным расстоянием f. Определить зависимость диаметра пятна в фокусе d0 от расходимости лазерного излучения  $\Box$  и фокусного расстояния линзы f.
- 17. Рассчитать оптическую проекционную схему с телескопической осветительной системой, с параметрами dofp = 1 мм, dnp = 50 мм, dofp = 10 мкм, fnp = 50 мм, dn = 1 см,  $\Box np = 1/20$ . Увеличение телескопа произвольно, материал маски медная фольга толщиной 0,1 мм, материал образца пленка хрома толщиной 0,1 мкм на стекле.
- 18. Рассчитать длину 10 и диаметр d0 световой трубки, образующейся при фокусировке пучка лазерного излучения диаметром D0 и расходимостью □ линзой с фокусным расстоянием f.
  - 19. Вывести формулу для геометрической глубины резкости при фокусировке лазерного излучения.
- 20. Рассчитать пространственно геометрические характеристики лазерных пучков (одномодового, многомодового, дифракционно-ограниченного и теоретические): угол расходимости, размер фокального пятна и глубину резкости.
- 21. Рассчитать оптическую систему энергетического фокусирующего канала для лазера на аргоне:  $\lambda$  = 514 нм, диаметр пучка на выходе лазера 1,5 мм на уровне 1/е, расходимость пучка 0,5 мрад, если излучение должно быть сфокусировано в вакуумированной кювете длиной 30 мм в пятно диаметром 1,2 мкм.
- 22. Изобразить принципиальные схемы лазерных установок с плоттером и координатным столом. Указать условия постоянства плотности мощности излучения в системе с плоттером.
- 23. Определить размеры рабочего поля в сканирующей системе по значениям допустимых отклонений  $\Box d = 200$  мкм размера фокального пятна d = 50 мкм в плоскости обработки для Nd:YAG-лазера. Фокусное расстояние оптической системы 60 см, расстояние от центра зеркала до обрабатываемой поверхности 50 см.
- 24. Привести габаритный и энергетический расчет проекционной схемы с осветительной телескопической системой.
- 25. Определить теоретический предел максимального и минимального масштаба проекции при телецентрическом освещении маски.
- 26. Дать размерные и энергетические характеристики микропроекционной оптической схемы. Сравнить с условиями обработки в схеме без осветительной системы, без проекционной системы.
- 27. Проанализировать возможность минимизации размеров контурнопроекционной схемы (за счет передвижения лазера), для чего построить ход лучей в оптической системе с лазером, расположенным в передней фокальной плоскости осветительной системы, до и после нее.
- 28. Провести габаритный расчет оптической системы для фокусировки излучения от оптического многомодового волокна с внутренним диаметром 400 мкм в пятно диаметром 200 мкм. Угол расходимости излучения 0,1 рад, расстояние от торца волокна до плоскости обработки 10 см.
- 29. Провести габаритный расчет оптической системы для фокусировки излучения ( $\lambda = 1,06$  мкм) от оптического волокна с внутренним диаметром 500 мкм со значением инварианта Лагранжа-Гельмгольца  $0.21 \Box 10$ -6 м рад в пятно размером d0 = 100 мкм.
- 30. Определить, какое смещение маски вдоль оптической оси необходимо обеспечить в проекционной схеме с «дрожащей» маской для получения на образце рельефа высотой  $\Box 0 = 1$  мкм.
  - 31. В проекционной схеме с использованием полутоновой маски (с переменным пропусканием)

определить зависимость профиля обрабатываемой поверхности от пропускания маски, приняв скорость испарения равной (q — плотность мощности излучения, Lucп — удельная теплота испарения материала, Дж/см3). Рассчитать маску для заданной точности формирования профиля поверхности  $\square=1$  мкм при длительности импульса излучения  $\square=10$ -9 с, максимальном значении плотности мощности излучения на поверхности образца qmax = 1010 BT/см2. Определить количество импульсов, необходимое для получения профиля высотой 10 мкм.

- 32. Рассчитать оптическую систему для ввода излучения Nd:YAG-лазера с расходимостью 10' и диаметром пучка 5 мм в одномодовое оптическое волокно с числовой апертурой 0,22.
- 33. Предложить схему, осуществляющую проекционный метод лазерной обработки со сканированием пучка по маске, разрешающий противоречие между разрешающей способностью и полем изображения. Сравнить с базовым проекционным методом (одновременная засветка всей поверхности маски). Провести габаритный и энергетический расчет при соотношении диаметра пучка на поверхности маски и размера максимальной прорези маски 1:20.

#### Компетенция ПК-1; ПК-3:

- 34. Рассчитать длину 10 и диаметр d0 световой трубки, образующейся при фокусировке пучка лазерного излучения диаметром D0 и расходимостью Ө линзой с фокусным расстоянием f.
- 35. Провести габаритный расчет оптической системы для фокусировки излучения от оптического многомодового волокна с внутренним диаметром 400 мкм в пятно диаметром 200 мкм. Угол расходимости излучения 0.1 рад, расстояние от торца волокна до плоскости обработки 10 см.
- 36. Оценить скорость испарения материала (скорость роста глубины отверстия) в стали, вольфраме при поглощенной плотности мощности излучения q=108 Bт/см2.
- 37. Оценить плотности мощности лазерного излучения, необходимые для нагревания алюминия, меди, вольфрама, железа до температур плавления и температур кипения излучением лазера с длиной волны  $\lambda$ =1,06 мкм при длительностях импульса излучения  $\square$ =10-3 с и  $\square$ =10-7 с.
- 38. Определить диапазон скоростей сканирования Vcк пучка излучения непрерывного лазера при фокусировке его излучения в пятно диаметром 100 мкм, при которых время эффективного воздействия находится в диапазоне 10-3 10-9 с.
- 39. Оценить плотности мощности лазерного излучения q0, необходимые для окисления поверхностей хрома, никеля, висмута, ванадия, меди:
  - а) импульсным лазерным излучением на длине волны 1,06 мкм;
  - б) непрерывным излучением Nd:YAG-лазера;
- в) непрерывным и импульсным ( $\square=1$  мкс) излучением CO2-лазера при размере области облучения r0=500 мкм.
- 40. Сделать выводы о термохимической чувствительности этих металлов на длине волны  $\lambda = 1,06$  мкм при длительности импульса 1 мкс.
- 41. Определить длительности воздействия, необходимые для испарения керамики, стекла, пластмассы следующими источниками излучения:
- а) непрерывным излучением CO2-лазера мощностью  $P=100~\mathrm{Bt}$  при радиусе облученной области  $r0=30~\mathrm{mkm}$ ;
  - б) непрерывным излучением Nd:YAG-лазера мощностью P = 100 Bt при r0 = 1 мм.
- 42. Определить, произойдет ли локальное испарение поверхности вольфрама при фокусировании на ней пучка непрерывного Nd:YAG-лазера мощностью 100 Вт (фокусное расстояние оптической системы f = 5 см) при расходимости пучка:
  - a)  $\square = 2$  мрад;
  - б)  $\Box = 20$  мрад.
- 43. Обосновать применение CO2-лазера для обработки Al, Cu (сильное отражение). Рассчитать пороговые плотности мощности по двум схемам: 1) испарение металла, 2) окисление и испарение металла.
- 44. Определить зависимость размера зоны теплового воздействия на поверхности объекта от скорости сканирования излучения непрерывного лазера. Построить график этой зависимости.
- 45. Рассчитать температуру поверхности облучаемого тела в центре облученной области при изменяющейся во времени плотности мощности излучения, приняв аппроксимацию

, если .

- 46. Найти давление отдачи при лазерном испарении железа, если скорость его удаления 1 м/с, а скорость пара у поверхности 1 км/с.
- 47. Определить давление отдачи, действующее на стальную мишень при испарении слоя 10 мкм импульсом лазерного излучения длительностью 10-7 с, если скорость вылета паров 1 км/с.
- 48. Определить связь импульса отдачи, возникающего при испарении материала с помощью лазерного излучения, и давления отдачи с плотностью мощности.
- 49. По формуле Френкеля найти максимальное значение dV/dT и определить его величину применительно к конкретным процессам испарения, окисления, диффузии.
  - 50. Выявить связь между градиентом температуры и темпом нагревания металла на поверхности

в центре облученной области радиусом 100 мкм, если максимальная температура нагревания Ттах = 1000 ОС для случаев воздействия излучения:

- а) эксимерного ArF-лазера,  $\Box = 1$  нс;
- б) Nd:YAG-лазера,  $\Box = 100$  нс;
- в) Nd:YAG-лазера,  $\square = 1$  мс;
- г) непрерывного CO2-лазера,  $\Box = 1$  с.
- 51. Пользуясь геометрической моделью, найти максимально возможное отношение глубины отверстия к его диаметру.
  - 52. Определить максимальную скорость резки Vmax медной фольги толщиной h = 0,1 мм:
  - а) непрерывным излучением Nd:YAG-лазера мощностью P = 500 Вт при радиусе пятна r0 = 50 мкм;
- б) импульсным излучением Nd:YAG-лазера со средней мощностью  $Pcp = 500~Bt,~\Box = 10-7~c;$  частота следования импульсов fu =  $10~\kappa\Gamma$ ц, r0 =  $50~\kappa\kappa$ м, угол схождения излучения  $\Box = 3~\Box$ .
- 53. Определить значения плотности мощности излучения, необходимые для получения отверстия в стали глубиной 1 мм ( $\square$  = 10-3 с,  $\square$  = 0,2 рад). Вывести зависимость поглощенной плотности мощности лазерного излучения от глубины отверстия.
- 54. Пользуясь законом сохранения импульса, оценить давление отдачи пара по известным экспериментальным значениям толщины испаренного слоя алюминия и длительности лазерного импульса. Построить зависимость толщины испаренного слоя от времени.
- 55. Определить зависимость глубины и радиуса отверстия от параметров обработки (энергии лазерного импульса, угла расхождения излучения после фокуса оптической системы) при h(t)>>r0 и при h (t)<<ru>
- 56. Оценить глубину отверстия, получаемую импульсом свободной генерации, игнорируя пичковую структуру, если  $\square=10$ -3 с, W=10-2 Дж, диаметр пятна в фокусе 20 мкм. Определить перекрытие отверстий при скорости перемещения объекта Vck=0,1 см/с, частоте следования импульсов fu=250  $\Gamma$ ц, fu=0,4. Материал железо.
- 57. Предложить оптико-механическую схему лазерного сверления от-верстий диаметром от 10 до 200 мкм в фольге толщиной 100 мкм, если производительность лазера равна 600 отв/мин, фокусное расстояние оптической системы f = 50 мм, материалы сталь и медь.
- 58. Определить параметры оптической системы ( $\square$  и f ) для профильной резки медицинских стентов («протезов» кровеносных сосудов) металлических трубок диаметром 1 и 2 мм с толщиной стенок 100 мкм, при которых исключаются повреждения противоположной стенки трубки, когда ее передняя поверхность испаряется.
- 59. Определить глубину отверстия h, его диаметр d и отношение h/d при многоимпульсной обработке, используя геометрическую модель образования отверстия.
- 60. Оценить параметры многоимпульсного режима обработки для получения в стали отверстий глубиной 1 мм и диаметром 100 мкм при скорости испарения Vи = 1 км/с. Расчет провести для импульсов излучения длительностью 1 мс, 0,1 мкс, 10 нс.
- 61. Определить для указанных ниже материалов критерии быстро и медленно движущегося источника и пороговые плотности мощности излучения, необходимые для их резки при скоростях сканирования:
- 1) бумага, 500 см/с; 2) фанера, 2 см/с; 3) стекло, 2,5 см/с; 4) сталь, 10 см/с; 5) резина, 2,5 см/с; 6) кожа, 28 см/с.
- 62. Размер облученной области для стали 200 мкм, для остальных материалов 500 мкм. Определить значения необходимой мощности излучения.
- 63. Найти пороги лазерной резки материалов непрерывным излучением CO и Nd:YAG-лазеров. Определить достижимые глубины резки при мощности излучения P0 = 100 Bt (Nd:YAG-лазер) и P0 = 1000 Bt (CO2-лазер). Найти максимальную скорость резки Vmax пластины стали толщиной d = 1 мм для этих же лазеров.
- 64. Сравнить пороги резки для импульсного и непрерывного Nd:YAG-лазера и скорости резки при толщине пластины d=1 мм и при одной и той же средней мощности P=500 Bt.
- 65. Проанализировать возможность использования полупроводникового лазера (мощность 100 мВт, расходимость  $250 \times 150$  мрад) для резки бумаги.
- 66. Рассчитать изменение параметров установки при использовании оптической системы с автоподстройкой фокуса при заданной глубине и диаметре отверстий.
- 67. Определить максимальную допустимую скорость сканирования лазерного пучка при лазерной гравировке испарением поверхности хрома излучением непрерывного Nd:YAG-лазера мощностью  $100~{\rm Bt}$  при радиусе пятна облученной области  $r0=0.3~{\rm mm}$ . Оценить скорости сканирования, необходимые для удаления слоя хрома толщиной  $10~{\rm mkm}$  и  $100~{\rm mkm}$ .
- 68. Определить скорость движения частиц от поверхности детали при ее сухой лазерной очистке, предполагая, что частицы имеют сферическую форму и слабую адгезию к поверхности, распределение температуры в них равномерное, а теплоотвод из частиц в деталь пренебрежимо мал. Определить мощность излучения лазера при длительности импульса 10 нс, необходимую для достижения частицами меди скорости 0,1 м/с при размере облученной области 1 см2. Поглощательную способность частиц

принять равной 0,1.

- 69. Определить мощность лазерного излучения, необходимую для испарения смазочного масла с поверхности стального рельса при воздействии излучения волоконного лазера (длина волны 0,53 мкм) и СО2-лазера, работающих в непрерывном режиме при сканировании со скоростью 1 м/с и диаметре лазерного пятна на поверхности рельса 5 мм. Толщина пленки масла на поверхности рельса 0,1 мм, температуру испарения масла принять равной 400 °С, удельную теплоту испарения 190 кДж/кг. Оптимизировать схему сканирования и рассчитать скорость движения вагонетки при ширине рельса 73 мм.
- 70. Проанализировать возможности уменьшения шероховатости поверхности боросиликатного стекла (температура испарения  $Tu = 1200 \ \Box C$ ) с RzH = 100 мкм до Rz = 50 мкм обработкой его сходящимся пучком импульсного CO2-лазера с длительностью импульса 10 мкс и мощностью 60 Вт и оптической системы с фокусным расстоянием 2 см при диаметре пучка на выходе оптической системы 25 мм. Определить расстояние от поверхности положения средней линии профиля обрабатываемой поверхности до фокальной плоскости оптической системы.
- 71. Сформулировать критерии и выбрать оптимальные лазеры для микроструктурирования поверхностей материалов: металла (стали), стекла, кремния, керамики (Al2O3).
- 72. Определить длину волны лазерного излучения для осуществления сквозной аморфизации стеклокерамической пластины (марки СТ-50) толщиной 0,5 мм, если она уже аморфизована на глубину 0,3 мм от поверхности пластины.
- 73. Сравнить два способа аморфизации стеклокерамической пластины (марки СТ-50) толщиной 0,5 мм с использованием излучения Nd:YAG и CO2-лазеров для случая, когда необходимо осуществить аморфизацию на глубину 0,3 мм. Выбрать оптимальный способ.
- 74. Определить геометрическую форму кривой поверхности в стекле в результате локального теплового расширения при нагревании: а) гауссовым пучком; б) пучком с равномерным распределением интенсивности; в) найти такую форму распределения мощности, чтобы образовался шаровой сегмент.
- 75. Рассчитать оптическую силу двойного элемента, полученного локальным спеканием пластины пористого стекла толщиной 2 мм при воздействии излучения СО2-лазера непрерывного действия последовательно с обеих сторон пластины для произвольных значений мощности излучения, длительности воздействия и диаметра облученной области.
- 76. Рассчитать взаимное расположение элементов в схеме ЛИПАА (LIPAA) при длине волны 0,248 мкм и фокусном расстоянии 50 мм. Произвести энергетический расчет для случая, когда мишень сделана из стали.
- 77. Торец волновода, передающий излучение лазера непрерывного действия мощностью 1 Вт, покрыт непрозрачной металлической насадкой и погружен в воду. Определить скорость образующихся на торце волновода пузырьков пара в момент их отрыва, частоту генерации пузырьков и расстояние между ними, если известно, что диаметр пузырьков в момент отрыва составляет 3 мм.
- 78. Определить, через какое время с начала воздействия излучения Nd:YAG-лазера на боковую стенку (цилиндрической) бутылки пробка будет удалена из бутылки давлением паров, если известно, что энергия импульса 20 мДж, частота следования импульсов 4 к $\Gamma$ ц, содержимое бутылки представляет собой жидкость, преимущественно состоящую из воды (88,5%) и спирта (11,5%), объем воздушной части (в горлышке бутылки) составляет 20 мл, а пробка выдерживает избыточное давление 0,5 атм. Считать, что коэффициент отражения от поверхности составляет 0,5, а глубина проникновения излучения внутри бутылки 2 см. Определить зависимость времени удаления пробки от объема воздушной части.
- 79. Определить диаметр и скорость вращения барабана (с кинопленкой) высокоскоростной киносъемочной камеры, призванной обеспечить скорость съемки 1 млн кадров/с при высоте кадра 8 мм.
- 80. Определить окно «оптической» прозрачности земной атмосферы, используя формулу Вина, считая среднюю температуру земного шара по всем широтам и временам года равной  $14\,^{\circ}\mathrm{C}$ .

#### Компетенция ПК-1; ПК-3:

- 1. От чего зависит диаметр пучка в фокусе линзы?
- 2. Как определить мощность и энергию импульсов излучения?
- 3. Что такое плотность мощности лазерного излучения?
- 4. Что такое характерный размер гауссова распределения плотности мощности излучения в пучке?
  - 5. Что такое механический обтюратор?
  - 6. Назовите основные характеристики лазерного излучения.
  - 7. Преимущества лазерного излучения.
  - 8. Недостатки лазерного излучения.
  - 9. Области применения лазерного излучения.
  - 10. Типы лазеров.
  - 11. Многомодовый лазер.
  - 12. Одномодовый лазер.
  - 13. Режимы работы лазера.

- 14. Перспективы применения лазеров.
- 15. Лазерное микроструктурирование поверхностей.
- 16. Лазерное сверление.
- 17. Лазерная пайка.
- 18. Лазерная микрообработка.

Образец экзаменационного билета для сдачи зачета

- 1. Лазерное сверление микроотверстий в алмазных фильерах для волочения проволоки. (УК-4; УК-6).
  - 2. Технологические лазеры и лазерные технологии. (ПК-1; ПК-3;)/
  - 3. Задача.

По формуле Френкеля найти максимальное значение dV/dT и определить его величину применительно к конкретным процессам испарения, окисления, диффузии. (ПК-1; ПК-3).

#### 3. Тестовые задания. Оценка по результатам тестирования.

Задание 1 (УК-4; УК-6)

Выберите правильный вариант ответа.

Указать правильный ответ

В равномерно движущемся поезде пассажир бросает вверх мяч. Перемещение АВ мяча относительно дороги определяется на рис.:

Задание 2 (ПК-1; ПК-3)

Приведите последовательность в порядке возрастания радиуса:

- 1: электрон
- 2: ядро атома
- 3: атом
- 4: молекула

Задание 3 (ПК-1; ПК-3)

Последовательность в порядке возрастания длительности

- 1: нс
- 2: мкс
- 3: мс
- 4: c
- 5: мин
- 6: час

Полный комплект тестовых заданий в корпоративной тестовой оболочке АСТ размещен на сервере УИТ ДВГУПС, а также на сайте Университета в разделе СДО ДВГУПС (образовательная среда в личном кабинете преподавателя).

Соответствие между бальной системой и системой оценивания по результатам тестирования устанавливается посредством следующей таблицы:

| Объект      | Показатели           | Оценка                | Уровень            |
|-------------|----------------------|-----------------------|--------------------|
| оценки      | оценивания           |                       | результатов        |
|             | результатов обучения |                       | обучения           |
| Обучающийся | 60 баллов и менее    | «Неудовлетворительно» | Низкий уровень     |
|             | 74 – 61 баллов       | «Удовлетворительно»   | Пороговый уровень  |
|             | 84 – 75 баллов       | «Хорошо»              | Повышенный уровень |
|             | 100 – 85 баллов      | «Отлично»             | Высокий уровень    |

# 4. Оценка ответа обучающегося на вопросы, задачу (задание) экзаменационного билета, зачета, курсового проектирования.

Оценка ответа обучающегося на вопросы, задачу (задание) экзаменационного билета, зачета

| Элементы оценивания | Содержание шкалы оценивания |                 |         |         |  |  |
|---------------------|-----------------------------|-----------------|---------|---------|--|--|
|                     | Неудовлетворительн          | Удовлетворитель | Хорошо  | Отлично |  |  |
|                     | Не зачтено                  | Зачтено         | Зачтено | Зачтено |  |  |

| Соответствие ответов формулировкам вопросов (заданий)                                                                        | Полное несоответствие по всем вопросам.                              | Значительные погрешности.                                                                                                         | Незначительные погрешности.                                                                                                         | Полное соответствие.                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Структура,<br>последовательность и<br>логика ответа. Умение<br>четко, понятно,<br>грамотно и свободно<br>излагать свои мысли | Полное несоответствие критерию.                                      | Значительное несоответствие критерию.                                                                                             | Незначительное несоответствие критерию.                                                                                             | Соответствие критерию при ответе на все вопросы.                                                                        |
| Знание нормативных, правовых документов и специальной литературы                                                             | Полное незнание нормативной и правовой базы и специальной литературы | Имеют место существенные упущения (незнание большей части из документов и специальной литературы по названию, содержанию и т.д.). | Имеют место несущественные упущения и незнание отдельных (единичных) работ из числа обязательной литературы.                        | Полное соответствие данному критерию ответов на все вопросы.                                                            |
| Умение увязывать теорию с практикой, в том числе в области профессиональной работы                                           | Умение связать теорию с практикой работы не проявляется.             | Умение связать вопросы теории и практики проявляется редко.                                                                       | Умение связать вопросы теории и практики в основном проявляется.                                                                    | Полное соответствие данному критерию. Способность интегрировать знания и привлекать сведения из различных научных сфер. |
| Качество ответов на дополнительные вопросы                                                                                   | На все дополнительные вопросы преподавателя даны неверные ответы.    | Ответы на большую часть дополнительных вопросов преподавателя даны неверно.                                                       | . Даны неполные ответы на дополнительные вопросы преподавателя. 2. Дан один неверный ответ на дополнительные вопросы преподавателя. | Даны верные ответы на все дополнительные вопросы преподавателя.                                                         |

Примечание: итоговая оценка формируется как средняя арифметическая результатов элементов оценивания.